Phosphorylation-Induced Autoinhibition Regulates the Cytoskeletal Protein Lethal (2) giant larvae
نویسندگان
چکیده
During asymmetric cell division, cell fate determinants localize asymmetrically and segregate into one of the two daughter cells. In Drosophila neuroblasts, the asymmetric localization of cell fate determinants to the basal cell cortex requires aPKC. aPKC localizes to the apical cell cortex and phosphorylates the cytoskeletal protein Lethal (2) giant larvae (Lgl). Upon phosphorylation, Lgl dissociates from the cytoskeleton and becomes inactive. Here, we show that phosphorylation regulates Lgl by allowing an autoinhibitory interaction of the N terminus with the C terminus of the protein. We demonstrate that interaction with the cytoskeleton is mediated by a C-terminal domain while the N terminus is not required. Instead, the N terminus can bind to the C terminus and can compete for binding to the cytoskeleton. Interaction between the N- and C-terminal domains requires phosphorylation of Lgl by aPKC. Our results suggest that unphosphorylated, active Lgl exists in an open conformation that interacts with the cytoskeleton while phosphorylation changes the protein to an autoinhibited state.
منابع مشابه
Lgl and its phosphorylation by aPKC regulate oocyte polarity formation in Drosophila.
Specification of the anteroposterior (AP) axis in Drosophila oocytes requires proper organization of the microtubule and actin cytoskeleton. The establishment and regulation of cytoskeletal polarity remain poorly understood, however. Here, we show important roles for the tumor suppressor Lethal (2) giant larvae (Lgl) and atypical protein kinase C (aPKC) in regulating microtubule polarity and se...
متن کاملOrdered Multisite Phosphorylation of Lethal Giant Larvae by Atypical Protein Kinase C
In Par complex-mediated cell polarity, phosphorylation by atypical protein kinase C (aPKC) is coupled to substrate cortical displacement. Polarized substrates often contain multiple phosphorylation sites, but the role of multisite phosphorylation in Par-mediated polarity remains unclear. Here, we have dissected the role of the three aPKC phosphorylation sites within the tumor suppressor Lethal ...
متن کاملCell Polarity: Keeping Worms LeGaL
The protein Lethal giant larvae (LGL) regulates cell polarity in diverse animal models. Now, an LGL orthologue has been identified in the worm Caenorhabditis elegans and is shown to function redundantly with a worm-specific polarity protein, PAR-2.
متن کاملThe tumor suppressor Lgl1 regulates NMII-A cellular distribution and focal adhesion morphology to optimize cell migration
The Drosophila tumor suppressor Lethal (2) giant larvae (Lgl) regulates the apical-basal polarity in epithelia and asymmetric cell division. However, little is known about the role of Lgl in cell polarity in migrating cells. In this study we show direct physiological interactions between the mammalian homologue of Lgl (Lgl1) and the nonmuscle myosin II isoform A (NMII-A). We demonstrate that Lg...
متن کاملThe Drosophila lethal(2)giant larvae tumor suppressor protein is a component of the cytoskeleton
Tumor suppressor genes act as recessive determinants of cancer. In Drosophila these genes play a role in normal development and are essential for regulating cell growth and differentiation. Mutations in the gene, lethal(2)giant larvae, l(2)gl, besides causing malignant tumors in the brain and imaginal discs, generate developmental defects in a number of other tissues. Much of the uncertainty re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005